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Makanin’s algorithm

G. S. Makanin, The problem of solvability of equations in a
free semigroup, Mat. Sb., 1977 (6-NEXPTIME ?)

Joxan Jaffar, Minimal and complete word unification. J.
ACM, 1990 (4-NEXPTIME, all solutions)

Klaus U. Schulz, Makanin’s Algorithm for Word Equations -
Two Improvements and a Generalization. IWWERT 1990

Antoni Kościelski and Leszek Pacholski, Complexity of
Makanins algorithm. J. ACM, 1996 (3-NEXPTIME)

Claudio Gutiérrez, Satisfiability of word equations with
constants is in exponential space. FOCS, 1998 (EXPSPACE)

Volker Diekert, Makanin’s algorithm. In Algebraic
Combinatorics on Words, 2002 (rational constraints)
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Some ideas : Length type

xay = zbzb

(|x |, |y |, |z |) = (1, 4, 2)

x1 a y1 y2 y3 y4

z1 z2 b z1 z2 b

x 7→ a

y 7→ baab

z 7→ aa
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Some ideas : Elementary transformations

xay = zbzb
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Some ideas : Elementary transformations

xay = zbzb

|x | < |z |
z 7→ xz

xay = xzbxzb

x1 a y1 y2 y3 y4

z1 z2 b z1 z2 b
7→

a y1 y2 y3 y4

z1 b x1 z1 b
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Bound on the exponent of periodicity

φ(u) = φ(v) = pw es

Makanin: double exponential

Kościelski and Pacholski: O(21.07d)
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Different concept of transformations: Compression

Wojciech Plandowski, Wojciech Rytter, Application of
Lempel-Ziv encodings to the solution of word equations.
ICALP 1998

Wojciech Plandowski, Satisfiability of word equations with
constants is in NEXPTIME. STOC 1999.

Wojciech Plandowski, Satisfiability of word equations with
constants is in PSPACE. J. ACM 2004.

Wojciech Plandowski, An efficient algorithm for solving word
equations. STOC, 2006. (Graph representing all solutions)
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Lempel - Ziv compression

aacaacabcabaaac

(0,0,a)
(1,1,c)
(3,4,b)
(3,3,a)

(12,3,$)

xay = zbzb
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Artur Jeż: Recompression

Approximation of Grammar-Based Compression via
Recompression. CPM 2013

Artur Jeż, Recompression: a simple and powerful technique
for word equations. STACS 2013.

Recompression: Word Equations and Beyond. Developments
in Language Theory 2013

The Complexity of Compressed Membership Problems for
Finite Automata. Theory Comput. Syst. 2014

Approximation of grammar-based compression via
recompression. Theor. Comput. Sci. 2015

Faster Fully Compressed Pattern Matching by Recompression.
ACM Transactions on Algorithms 2015

One-Variable Word Equations in Linear Time. Algorithmica
2016
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Artur Jeż: Recompression

Guess letters at the beginning and the end of variables

Compress chosen pairs of letters

xay = zbzb

bxbaayb = azbbazb

bxbaayb = azbbazb

bxcayb = azbczb
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General strategy of all algorithms

Transformation rules (non-deterministic)

boundary equations (Makanin)
exponential expressions (Plandowski)
ordinary equations (Jeż)

Terminating condition based on bounds on

length of the minimal solution
size of the transformed equation
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Current knowledge

exponent of periodicity: O(2cn) (tight)

length of the minimal solution: N < 2q(n)·n
cnv
v

NTIME: O(logN poly(n))

SPACE: O(n log n)

NP hard (e.g. easy reduction of 3SAT)

NP complete ?
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Compactness property

System S is equivalent to T if and only if they have the same
set of solutions.

Theorem (Compactness property)

Every infinite system of equations in finitely many unknowns is
equivalent to a finite subsystem.

Easily equivalent (1980) to “Eherenfeucht’s conjecture”
(beginning of 1970s - Nowa Ksiȩga Szkocka, problem 105)

Theorem
Every language over a finite alphabet has a finite test set (testing
equality of morphisms on the language).

Proved independently by Albert & Lawrence (1985); and
Guba (1986).

Core of both proofs: Hilbert’s basis theorem.
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Theorem
Every language over a finite alphabet has a finite test set (testing
equality of morphisms on the language).

Proved independently by Albert & Lawrence (1985); and
Guba (1986).

Core of both proofs: Hilbert’s basis theorem.
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Compactness

a =

(
1 1
0 1

)
, b =

(
1 0
1 1

)
SL(N0) = 〈a,b〉 ∼= {a, b}∗

c =

(
1 2
0 1

)
, d =

(
1 0
2 1

)
〈c,d〉 ∼= F2

xj 7→ mj =

(
a(j) b(j)

c(j) d (j)

)

Ξ∗ M

SL(N0)

ψ

ϕ ϕ̃
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What is the size of the equivalent subsystem?

The system is independent if it has no equivalent subsystem.

Big open question
Is the size of an independent system of equations over n
unknowns bounded?

Open already for three unknows (trivial for two).

Unbounded in free groups (three-generated free group does
not satisfy Ascending Chain Condition for normal subgroups).

Lower bound Ω(n4) (explicit system by Karhumäki and
Plandowski, 1996).
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Plandowski, 1996).
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Bounds on the size of independent systems for three
unknowns

Let E1, . . . ,Em, m ≥ 2, be an independent system of equations in
three unknowns having a nonperiodic solution.

Aleksi Saarela, Systems of word equations, polynomials and
linear algebra: A new approach, European J. Combin. 2015

m ≤ (|E1|x + |E1|y )2 + 1 for some pair x , y of unknowns.

Š. H., Jan Žemlička, Algebraic properties of word equations,
Journal of Algebra 2015

1 m ≤ 2(|E1|x + |E1|y ) + 1 for any pair x , y of unknowns, and

2 m ≤ |E1|+ |E2|+ 1.
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Representation by polynomials

Let the alphabet A be a subset of N, and let unknowns be
Ξ = {x , y , z}.

P : A∗ → N[α]

a0a1a2 · · · an 7→ a0 + a1α + a2α
2 + · · ·+ anα

n

For a morphism h : Ξ∗ → A∗, let

P(h) = (P (h(x)) ,P (h(y)) ,P (h(z)))
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Representation by polynomials

S : E × {x , y , z} → Z[X ,Y ,Z ]

E : (xyyz , zyyx)

SE ,x = 1− ZY 2

SE ,y = X + XY − Z − ZY

SE ,z = XY 2 − 1

SE = (SE ,x , SE ,y ,SE ,z)

Length type L = (Lx , Ly , Lz) ∈ N3. Define SE (L) by substitution

X 7→ αLx Y 7→ αLy Z 7→ αLz
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Representation by polynomials

h with L(h) = {|h(x)|, |h(y)|, |h(z)|} is a solution of E

if and only if

SE (L(h)) · P(h) = 0 .
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Representation by polynomials: Example

E1 :(xyz , zyx)

E2 :(xyyz , zyyx)

SE1 = (1− ZY ,X − Z ,XY − 1)

SE2 = (1− ZY 2,X + XY − Z − ZY ,XY 2 − 1)

If a common non-periodic solution has a length type L, then
SE1(L) and SE2(L) are linearly dependent.
This means that the determinant Y (X − Z ) must vanish under the
substitution. Therefore |x | = |z |.
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Prize problem

I will pay 200 e to the first person who gives the answer (with a
proof) to the following question:

Is there a positive integer n ≥ 2 and words u1, u2, . . . , un such that
both equalities {

(u1u2 · · · un)2 = u21u
2
2 · · · u2n,

(u1u2 · · · un)3 = u31u
3
2 · · · u3n,

hold and the words ui , i = 1, . . . , n, do not pairwise commute (that
is, uiuj 6= ujui for at least one pair of indices i , j ∈ {1, 2, . . . , n} )?
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